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(57) ABSTRACT

In various embodiments, a differentiable rendering applica-
tion enables an inverse rendering application to infer attri-
butes associated with a 3D scene. In operation, the differ-
entiable rendering application renders an image based on a
first set of points associated with the 3D scene. The differ-
entiable rendering application then generates an artificial
gradient that approximates a change in a value of a first pixel
included in the image with respect to a change in an attribute
of a first point included in the first set of points. Subse-
quently, the inverse rendering application performs optimi-
zation operation(s) on the first point based on the artificial
gradient to generate a second set of points. Notably, an error
associated with the second set of points is less than an error
associated with the first set of points.
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TECHNIQUES FOR PERFORMING
POINT-BASED INVERSE RENDERING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the priority benefit of the
United States Provisional Patent Application titled “TECH-
NIQUES FOR PERFORMING POINT-BASED INVERSE
RENDERING,” filed on Sep. 2, 2019 and having Ser. No.
62/894,947. The subject matter of this related application is
hereby incorporated herein by reference.

BACKGROUND

Field of the Various Embodiments

[0002] Embodiments relate generally to computer science
and computer vision and, more specifically, to techniques for
performing point-based inverse rendering.

Description of the Related Art

[0003] Neural networks trained to recognize patterns in
input data based on example patterns included in training
data can be used to solve a wide variety of “computer
vision” problems. In computer vision, computers are pro-
grammed to infer, analyze, and/or process attributes of
three-dimensional (“3D scenes™) from digital two-dimen-
sional (“2D”) images. Some examples of these types of
attributes include, without limitation, coordinates, normals,
colors of points, camera position and orientation, and light-
ing.

[0004] For instance, in an iterative training process that
includes a forward rendering pass and a backward inverse
rendering pass, a neural network can be trained to infer
attributes associated with a 3D scene based on a 2D refer-
ence image. In the forward rendering pass, a rendering
function can be used to generate a 2D image based on a set
of inferred attributes. In the backward inverse rendering
pass, an error can be computed based on the difference
between the generated image and the reference image and
optimization operations can be performed on the set of
inferred attributes to reduce that error.

[0005] With respect to the backward inverse rendering
pass, optimizing the inferred attributes may require the
rendering function to be differentiable with respect to each
of the inferred attributes. For example, gradient descent is
one optimization algorithm that computes the values of a set
of attributes that minimize an overall error by making
incremental modifications to each attribute value in the
direction of the descending gradient (i.e., partial derivative)
of'the error with respect to that attribute. In certain instances,
a rendering function may be discontinuous at certain points
due to occlusions, where a portion of an object is blocked
from view, and edges. Consequently, the partial derivatives
of a rendering function with respect to point coordinates and
point normals may not be completely defined, and thus
disrupts or places limitations on error reduction.

[0006] To address the problems caused by the disconti-
nuities seen with such rendering functions, some “differen-
tiable” rendering implementations represent attributes via a
polygon mesh and use a simplified, differentiable rendering
function. A polygon mesh represents objects using a collec-
tion of vertices, edges, and faces. Each vertex has a different
location in 3D space, each edge is a connection between two
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vertices, and each face is a set of edges that make up a
polygon. Other differential rendering implementations rep-
resent attributes via a polygon mesh and approximate the
required gradients of a non-differentiable rendering func-
tion.

[0007] One drawback of both of these types of differen-
tiable rendering implementations is that the connectivity of
the vertices within the polygon meshes is not differentiable
and, as a result, the topology of the objects represented by
the polygon meshes cannot be modified. Thus, during a
backward inverse rendering pass, the object surfaces repre-
sented by the polygon meshes cannot be merged or sepa-
rated. Such a constraint can prevent the topology of a 3D
object, such as the number of distinct surfaces, from being
changed and therefore properly optimized during a back-
ward inverse rendering pass. Another drawback is that
polygon meshes may not specify normals (e.d., point nor-
mals, surface normals, vertex normals, etc.) explicitly.
Instead, a given face normal is determined by the positions
of the associated set of vertices; therefore, the face normal
cannot be updated independently of the positions of the
associated vertices. Such a constraint prevents the small
scale details that are conveyed via normals, such as the
lighting of bumps and dents on a particular surface of the
represented object, from being optimized properly during a
backward inverse rendering pass. Ultimately, when these
types of constraints are imposed on the optimizations imple-
mented in the backward inverse rendering pass, the overall
effectiveness of the training process and the resulting ability
of the trained neural network to accurately and reliably infer
3D geometry, motion, appearance, etc., from 2D images is
compromised.

[0008] As the foregoing illustrates, what is needed in the
art are more effective techniques for determining attributes
associated with 3D scenes based on 2D images.

SUMMARY

[0009] One embodiment sets forth a computer-imple-
mented method for inferring attributes associated with a
three-dimensional (3D) scene. The method includes render-
ing a first image based on a first plurality of points associated
with the 3D scene; generating a first artificial gradient that
approximates a change in a first value of a first pixel
included in the first image with respect to a change in a first
attribute of a first point included in the first plurality of
points; and performing one or more optimization operations
on the first point based on the first artificial gradient to
generate a second plurality of points, where an error asso-
ciated with the second plurality of points is less than an error
associated with the first plurality of points.

[0010] At least one technical advantage of the disclosed
techniques relative to the prior art is that the disclosed
techniques can be used to train neural networks to more
efficiently and more reliably solve computer vision prob-
lems. In particular, the disclosed techniques are tailored to
operate on relatively unstructured point clouds that can
represent changes to 3D objects at any scale. For example,
connectivity information is not directly represented in point
clouds. Accordingly, the disclosed techniques can be used to
make topology changes (e.d., merging and/or separating
surfaces) when optimizing point clouds during inverse ren-
dering to more accurately represent 3D objects relative to
prior art approaches. In another example, the normal of a
point can be modified independently of the position of the



US 2021/0065434 Al

point, which allows the disclosed techniques to more effec-
tively infer small scale details of 3D objects conveyed via
normals, such as the lighting of surface bumps, relative to
prior art approaches. These technical advantages provide
one or more technological advancements over prior art
approaches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] So that the manner in which the above recited
features of the various embodiments can be understood in
detail, a more particular description of the inventive con-
cepts, briefly summarized above, may be had by reference to
various embodiments, some of which are illustrated in the
appended drawings. It is to be noted, however, that the
appended drawings illustrate only typical embodiments of
the inventive concepts and are therefore not to be considered
limiting of scope in any way, and that there are other equally
effective embodiments.

[0012] FIG. 1 is a conceptual illustration of a system
configured to implement one or more aspects of the various
embodiments;

[0013] FIG. 2 illustrates how the gradient engine of FIG.
1 generates an artificial gradient, according to various
embodiments.

[0014] FIG. 3 illustrates how the gradient engine of FIG.
2 determines gradient directions for different exemplary
scenarios, according to various embodiments;

[0015] FIG. 4 is a more detailed illustration of the regu-
larization engine of FIG. 1, according to various embodi-
ments; and

[0016] FIG. 5 is a flow diagram of method steps for
determining attributes associated with 3D scenes based on
2D images, according to various embodiments.

DETAILED DESCRIPTION

[0017] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing of the various embodiments. However, it will be appar-
ent to one skilled in the art that the inventive concepts may
be practiced without one or more of these specific details.

System Overview

[0018] FIG. 1 is a conceptual illustration of a system 100
configured to implement one or more aspects of the various
embodiments. The system 100 includes, without limitation,
any number of compute instances 110. For explanatory
purposes, multiple instances of like objects are denoted with
reference numbers identifying the object and parenthetical
numbers identifying the instance where needed.

[0019] Any number of the components of the system 100
may be distributed across multiple geographic locations or
implemented in one or more cloud computing environments
(Le., encapsulated shared resources, software, data, etc.) in
any combination. In alternate embodiments, the system 100
may include any number of compute instances 110 in any
combination.

[0020] As shown, each of the compute instances 110
includes, without limitation, a processor 112 and a memory
116. The processor 112 may be any instruction execution
system, apparatus, or device capable of executing instruc-
tions. For example, the processor 112 could comprise a
central processing unit (“CPU”), a graphics processing unit
(“GPU”), a controller, a micro-controller, a state machine, or
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any combination thereof. The memory 116 stores content,
such as software applications and data, for use by the
processor 112 of the compute instance 110. In alternate
embodiments, each of any number of compute instances 110
may include any number of processors 112 and any number
of memories 116 in any combination. In particular, any
number of the compute instances 110 (including one) may
provide a multiprocessing environment in any technically
feasible fashion.

[0021] The memory 116 may be one or more of a readily
available memory, such as random access memory
(“RAM”), read only memory (“ROM”), floppy disk, hard
disk, or any other form of digital storage, local or remote. In
some embodiments, a storage (not shown) may supplement
or replace the memory 116. The storage may include any
number and type of external memories that are accessible to
the processor 112. For example, and without limitation, the
storage may include a Secure Digital Card, an external Flash
memory, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
or any suitable combination of the foregoing.

[0022] Each of the compute instances 110 is configured to
implement one or more applications or subsystems of appli-
cations. For explanatory purposes only, each application is
depicted as residing in the memory 116 of a single compute
instance 110 and executing on a processor 112 of the single
compute instance 110. However, in alternate embodiments,
the functionality of each application may be distributed
across any number of other applications that reside in the
memories 116 of any number of compute instances 110 and
execute on the processors 112 of any number of compute
instances 110 in any combination. Further, the functionality
of any number of applications or subsystems may be con-
solidated into a single application or subsystem.

[0023] In particular, the compute instances 110 implement
an iterative “computer vision” training process which can be
used to train neural networks to infer any number and type
of attributes of 3D scenes from 2D images. Some examples
of these types of attributes include, without limitation,
coordinates, normals, colors of points, camera position and
orientation, and lighting The 3D scene may include, without
limitation, any number of 3D objects and is associated with
a coordinate space referred to herein as a “source space.”
The source space is also commonly referred to as an “object
space.” The 2D image includes, without limitation, any
number of pixels, where each pixel is associated with a
different discrete location in a coordinate space referred to
herein as “screen space.” Pixels in the screen space lie on an
image plane.

[0024] In some previously used training processes, the
attributes are represented via a polygon mesh of vertices. In
a forward rendering pass, a differentiable rendering engine
uses a rendering function to generate a rendered image 150
based on a set of inferred attributes. As persons skilled in the
art will recognize, optimizing the inferred attributes may
require the rendering function to be differentiable with
respect to each of the inferred attributes. Accordingly, the
differentiable rendering engine either implements a simpli-
fied, differentiable rendering function or approximates the
required gradients of a non-differentiable rendering func-
tion. In a backward inverse rendering pass, an inverse
rendering engine computes an error based on a distance (i.e.,
difference) between the rendered image 150 and a reference
image 152. Subsequently, the inverse rendering engine per-
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forms optimization operations on the polygon mesh to
reduce the error. The inverse rendering engine uses the
actual derivatives of the simplified, differentiable rendering
function or the approximate gradients of the non-differen-
tiable rendering function to perform the optimization opera-
tions.

[0025] As described previously herein, one drawback of
these types of previously used training processes is that the
structure of the polygon mesh imposes constraints on the
optimizations implemented in the backward inverse render-
ing pass. As a result of these constraints, the overall effec-
tiveness of the training process and the resulting ability of
the trained neural network to accurately and reliably infer
3D geometry, motion, appearance, etc., from 2D images is
compromised.

Performing Differentiable Rendering Using Point
Clouds

[0026] To address the above problems, the compute
instance 110(1) implements a differentiable rendering appli-
cation 102 that generates the rendered image 150 and
gradient data 164 based on a point cloud 122 that represents
a 3D scene. Further, the compute instance 110(2) imple-
ments an inverse rendering application 120 that performs
optimization operations on the point cloud 122 based on the
gradient data 164.

[0027] The point cloud 122 includes, without limitation
any number of points 130 that represent any number of 3D
objects included in the 3D scene. Each of the points 130
includes, without limitation, a point position 132, a point
normal 134, and any number and type of additional attri-
butes 136 associated with the 3D scene. The point position
132(k) and the point normal 134(k) are attributes associated
with the 3D scene that specify, respectively, the 3D coordi-
nates and the normal of the point 130(%) in a source space.
The point cloud 122 does not explicitly specify any con-
nectivity and the point position 132(%) is independent of the
point normal 134(k%).

[0028] Note that the techniques described herein are illus-
trative rather than restrictive, and may be altered without
departing from the broader spirit and scope of the embodi-
ments. Many modifications and variations will be apparent
to those of ordinary skill in the art without departing from
the scope and spirit of the described embodiments and
techniques. Further, in various embodiments, any number of
the techniques disclosed herein may be implemented while
other techniques may be omitted in any technically feasible
fashion.

[0029] In particular and for explanatory purposes only,
various differentiable rendering techniques and various
inverse rendering techniques are described in the context of
the differentiable rendering application 102, the inverse
rendering application 120, and the reference image 152.
However, any number of the techniques described herein
may be used in any number of software applications in any
technically feasible fashion to perform differentiable ren-
dering, inverse rendering, and/or train any number and type
of applications to optimize any number of point clouds 122
based on any number of reference images 152. For instance,
in some embodiments, the differentiable rendering applica-
tion 102 is used to train a neural network to solve a computer
vision problem using reference images 152 corresponding to
different views of a 3D scene, and the inverse rendering
application 120 is omitted from the system 100. In the same
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or other embodiments, the neural network may implement
any number of the inverse rendering techniques described
herein.

[0030] As shown, the differentiable rendering application
102 resides in the memory 116 of the computer instance
110(1) and executes on the processor 112 of the computer
instance 110(1). As also shown, the inverse rendering appli-
cation 120 resides in the memory 116 of the computer
instance 110(2) and executes on the processor 122 of the
computer instance 110(2). The point cloud 122 is included in
the inverse rendering application 120. In alternate embodi-
ments, the differentiable rendering application 102 and the
inverse rendering application 120 may reside in any number
(including one) and type of memories and execute on any
number of processors 122 in any combination. In the same
or other embodiments, the point cloud 122 may be stored in
any memory independently of the inverse rendering appli-
cation 120.

[0031] The differentiable rendering application 102
includes, without limitation, a forward rendering engine
140, splat data 144, the rendered image 150, and a gradient
engine 160. As described in greater detail below, a “splat™ is
the projection of an elliptical Gaussian representing a given
point 130 in object space onto screen space after truncation
to bounded support as per equation (3) (also below). The
forward rendering engine 140 includes, without limitation, a
splatting engine 142 that performs screen space elliptical
weighted average (“EWA”) filtering operations on the point
cloud 122 to generate the rendered image 150 and the splat
data 144.

[0032] To initiate a forward pass, the splatting engine 142
applies an isotropic Gaussian filter to any number of the
attributes w of each of the points 130(%) in the tangent plane.
The tangent plane for the point 130(%) is defined by the point
normal 134(k) at the point 130(%). Examples of point attri-
butes w of the point 130(%) include, without limitation,
albedo color, shading, depth value, the point position 132(%),
the point normal 134(k), etc. For instance, in some embodi-
ments, the splatting engine 142 applies the isotropic Gauss-
ian filter to the point attributes w corresponding to shading
under three orthogonally positioned RGB colored sunlight.
In such embodiments, w carries strong information about the
point normal 134(%) independently of the point position
132(%).

[0033] For the point 130(%) included in the point cloud
122, the splatting engine 142 computes a filter weight of the
isotropic Gaussian filter at a position p using the following
equations (la) and (1b):

Gpp (p) = —— eV 0 (1)
21V, 2

V, = g—,f[ (1b)

[0034] In equations (1a) and (Ib), p, is the point position

132(k) of the point 130(k), V, is the variance, o, is the
standard deviation, and I is the identity matrix.

[0035] The splatting engine 142 then projects the resulting
Gaussian weights to screen space. More precisely, the splat-
ting engine 142 projects the point position 132(%) p, and the
position p to, respectively, a projected point position x, and
a pixel position x. At the pixel position x, the splatting
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engine 142 computes a screen space elliptical Gaussian
weight r, using the following equation (2):

@

_ 1
r(x) =Gy, (i - x)) = mgfkw[(""‘”

[0036] In equation (2), J, is the Jacobian of the projection
from the tangent plane to the image plane and is determined
by the point position 132(%) (denoted as p,) and the point
normal 134(k) denoted as (n,). Consequently, the screen
space elliptical Gaussian weight r,(x) is determined by the
point position 132(%) p, and the point normal 134(k) n,. The
projection expressed via equation (2) defines an elliptical
Gaussian. The elliptical Gaussian is also referred to herein as
an “ellipse” corresponding to the point 130(%) at the point
position 132(%) p,.

[0037] Subsequently, the splatting engine 142 convolves a
low-pass Gaussian filter with equation (2) in screen space.
The resulting elliptical Gaussian is also referred to herein as
a “splat” corresponding to the point 130(%) at the point
position 132(%) p,, and can be represented as the following
equation (3):

(3)
g/,(vkjlz'+l(x_x’<)

1
Pi(x) = —
YT

[0038] As persons skilled in the art will recognize, equa-
tion (3) is fully differentiable. However, to efficiently and
accurately compute the pixel values, the splatting engine
142 introduces two sources of discontinuity into equation
(3). To enable efficient computations of the pixel values, the
splatting engine 142 limits the computations performed for
ellipses in the image plane for all of the pixel positions x that
lie outside a cutoff radius C. The splatting engine 142 may
determine the cutoff radius C in any technically feasible
fashion. For instance, in some embodiments, the splatting
engine 142 determines C using the following equation (4):

12xT IV I+ Dx>C @

[0039] The splatting engine 142 also sets the Gaussian
weights for any number of occluded points 130 to zero. The
splatting engine 142 may determine the occluded points in
any technically feasible fashion. For instance, in some
embodiments, the splatting engine 142 maintains a list of the
A (e.g., 5) closest points 130 to each of the pixel positions.
For each of the closest points 130(a), the splatting engine
142 computes the depth difference between the depth of the
point 130(a) and the depth of the front-most point 130 in the
list. If the depth difference is greater than a threshold T (e.g.,
1% of the bounding box diagonal length), then the splatting
engine 142 sets the Gaussian weight of the point 130(a) to
Zero.

[0040] For the point 130(%) at the point position 132(%) P,,
a resulting “truncated Gaussian weight” p, can be expressed
as the following equation (5):

1 5
0, if zXT(JkaT+1)x> C, ®)

plx) = 0, if p; is occluded,

P> otherwise.

Mar. 4, 2021

[0041] The truncated Gaussian weight p, is also referred to
herein as a “discontinuous rasterization function.” The splat-
ting engine 142 computes the final pixel value at pixel
position x, denoted herein as I, as the normalized sum of all
filtered point attributes w,, where k ranges from 0 to N.
Accordingly, the final value of the pixel at pixel position x
can be expressed as the following equation (6):

k=N (6)

[0042] Equation (6) is also referred to herein as the
“rendering function.” In some embodiments, to increase
efficiency, the splatting engine 142 optimizes equation (6) by
computing the bounding box of each ellipse and only
considering the points 130 corresponding to ellipses that
cover the pixel at the pixel position x.

[0043] The splatting engine 142 computes the rendered
image 150 using equation (6). The splatting engine 142 then
transmits the rendered image 150 and the splat data 144 to
the gradient engine 160. The splat data 144 includes, without
limitation, any amount and type of information about any
number of the ellipses and the splats generated during the
forward pass.

[0044] Subsequently, the gradient engine 160 initiates a
backward pass. As described in greater detail in conjunction
with FIGS. 2 and 3, the gradient engine 160 computes the
gradient data 164 based on the splat data 144, the rendered
image 150, and the reference image 152. The gradient data
164 includes, without limitation, gradients for any number
of pixel values with respect to any number of points 130.
Each gradient includes, without limitation, an approximate
partial derivative of the pixel value with respect to the point
position 132(%) and an approximate partial derivative of the
pixel value with respect to the point normal 134(%). Notably,
to generate the gradient for the pixel value with respect to
the point 130(%), the gradient engine 160 implements con-
tinuous approximations of the discontinuities associated
with the truncated Gaussian weight p,. The gradient engine
160 then transmits the gradient data 164 to the inverse
rendering application 120.

[0045] The inverse rendering application 120 includes,
without limitation, an optimization engine 190, a regular-
ization engine 180, and the point cloud 122. During each
backward pass, the optimization engine 190 performs any
number of optimization operations on any number of the
attributes of any number of the points 130 included in the
point cloud 122. Importantly, the optimization engine 190
independently optimizes the point positions 132 and the
point normals 134. Further, the optimization engine 190
does not necessarily optimize the same attributes during
each pass. For instance, in some embodiments, the optimi-
zation engine 190 modifies the point normals 134 during Tn
passes and modifies the point positions 132 during Tp
subsequent passes.

[0046] As shown, the optimization engine 190 includes,
without limitation, an image loss 192 and an overall loss
194. The image loss 192 is a value for a metric that measures
a distance (i.e., difference) between the rendered image 150
and the reference image 152. The optimization engine 190
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computes the image loss 192 based on an image loss
function (not shown). The image loss function may be any
type of function and may be expressed in any technically
feasible fashion.

[0047] For instance, in some embodiments, the optimiza-
tion engine 190 computes the image loss 192 using a
Symmetric Mean Absolute Percentage loss function £, that
can be expressed as the following equation (7):

|1XC—1xc|
Li= HW My cl+ Wy ol + €

[0048] The overall loss 194 is a value for an error metric
that the optimization engine 190 is configured to minimize
in order to optimize the attributes. The optimization engine
190 computes the overall loss 194 based on an overall cost
function (not shown). The overall loss function may be any
type of function and may be expressed in any technically
feasible fashion. Further, the optimization engine 190 may
compute the overall loss function based on any number of
different rendered images 150, where each rendered image
150 corresponds to a different view of a 3D scene.

[0049] For instance, in some embodiments, the optimiza-
tion engine 190 implements an overall loss function that is
a weighted sum of the image loss function, a repulsion loss
term, and a projection loss term computed over V views.
Because any number of configurations of attributes can
result in the same rendered image 150, the regulation engine
180 defines the repulsion loss term and the projection loss
term to guide the optimization engine 190 to favor relatively
plausible configurations of the point cloud 122. The repul-
sion loss term and the projection loss term are also referred
to herein as regularization terms.

[0050] Accordingly, the overall loss function can be
express as the following equation (8):

v v (8
D LU =Y Lt ) 4y Ly + 7, Ly

v=0 v=0

[0051] In equation (8), £, is the repulsion loss term, £,
is the projection loss term, Y, is a repulsion loss weight (e.g.,
0.05), and Y, is a projection loss weight (e.g., 0.02). Nota-
bly, the repulsion loss term and the projection loss term are
dependent on the point cloud 122 but not the rendered image
150. As shown, the optimization engine 190 receives a
repulsion loss 182 and a projection loss 184 from the
regularization engine 180. The repulsion loss 182 and the
projection loss 184 are values for, respectively, the repulsion
loss term for the point cloud 122 and the projection loss term
for the point cloud 122. The regularization engine 180 is
described in greater detail in conjunction with FIG. 4. In
alternate embodiments, the regularization engine 180 and/or
the optimization engine 190 may implement any number and
type of regularization terms.

[0052] In general, optimizing the repulsion loss term
facilitates uniform point distributions by maximizing the
distances between the neighbors of the point 130(%) selected
for optimization on a local projection plane. By contrast,
optimizing the projection loss term preserves clean surfaces

Mar. 4, 2021

by minimizing the distance from the point 130(%) selected
for optimization to the surface tangent plane. In alternate
embodiments, the regularization engine 180 and/or the opti-
mization engine 190 may implement any number and type of
regularization terms.

[0053] After performing the optimization operations for
the current backward pass, the optimization engine 190
generates point update data 196 that specifies any number of
modifications to the point cloud 122. The inverse rendering
application 120 then updates any number of the point
positions 132, point normals 134, and additional attributes
136 as per the point update data 196. Subsequently, the
inverse rendering application 120 transmits the updated
point cloud 122 to the differentiable rendering application
102. In response, the differentiable rendering application
102 initiates a new forward pass.

[0054] The differentiable rendering application 102 and
the inverse rendering application 120 continue to work
together to optimize the point cloud 122 until any techni-
cally feasible completion criterion is met. The differentiable
rendering application 102 and/or the inverse rendering appli-
cation 120 may determine that the completion criterion is
met in any technically feasible fashion. For instance, in
some embodiments, the completion criterion is a loss thresh-
old and the differentiable rendering application compares the
overall loss 194 to the loss threshold to determine whether
to initiate a new forward pass.

[0055] It will be appreciated that the system shown herein
is illustrative and that variations and modifications are
possible. The connection topology, including the number,
location, and arrangement of the differentiable rendering
application 102, the inverse rendering application 120, the
point cloud 122, and the reference image 150 may be
modified as desired. In certain embodiments, one or more
components shown in FIG. 1 may not be present.

[0056] Note that the techniques described herein are illus-
trative rather than restrictive, and may be altered without
departing from the broader spirit and scope of the embodi-
ments. In particular, the differentiable rendering application
102 and the inverse rendering application 120 may be
implemented across any number (including one) of software
applications in any combination. For instance, in some
alternate embodiments, portions of the differentiable render-
ing application 102 and the inverse rendering application
120 may be implemented in a single neural network. Further,
in various embodiments, any number of the techniques
disclosed herein may be implemented while other tech-
niques may be omitted in any technically feasible fashion.

Computing Gradients for the Rendering Function

[0057] FIG. 2 illustrates how the gradient engine 160 of
FIG. 1 generates an artificial gradient 220, according to
various embodiments. As shown, the gradient engine 160
includes, without limitation, a visibility step function 210
and the artificial gradient 220. For explanatory purposes
only, a pixel 230(x) denotes the pixel 230 located at the
position X in screen space.

[0058] As described previously herein, the discontinuity in
the rendering function is encapsulated in the truncated
Gaussian weights p as per equation (5). To allow efficient
and automatic differentiation of the truncated Gaussian
weights p, the gradient engine 160 factorizes the discon-
tinuous truncated Gaussian weights p into a fully differen-
tiable term p and the visibility step function 210 h - {0, 1}.
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For the point 130(%) at the position 132(k) p,, the discon-
tinuous truncated Gaussian weight p, can be expressed using
the following equations (9a) and (9b):

Pr = oy (9a)

1 9b
0, if 5XT(JkaT +Dx>C, )

hy (@) = 0, if pi is occluded,
1, otherwise.
[0059] Because the number of pixels 230 around the

ellipse for which the point normal 134(k) n, impacts the
visibility is relatively small compared to the number of
pixels 230 around the ellipse for which the point position
132 p, impacts the visibility, the gradient engine 160 imple-
ments the following approximation (10):

ahy (10)
Er 0
[0060] Consequently, the visibility step function 210 is

solely determined by the point position 132 p,, and a pixel
value 280 of the pixel 230(x) can be written as a function of
the associated attribute w,, the associated fully differentiable
term p,, and the visibility step function 210 h,(x). The pixel
value 280 of the pixel 230(x) is denoted herein as 1. Using
the chain rule, the gradient of the pixel value 280 of the pixel
230(x) with respect to the point 130(%), can be expressed as
the following equations (11a) and (11b):

OL(wi. B hy) _ 0L dw, 0L dp, . Ol dk (11a)
dpi T Owedp 0P dpi Ohy Ope

ILve. P he) 0L Iwe L, 97, (11b)
Iy - Awy, Iy Bﬁk ny

[0061] Note that in equation (11a),

ahy,
9 pr

is undefined at the edges of ellipses due to occlusion.

[0062] To construct the gradient of the pixel value 280 of
the pixel 230(x) with respect to the point 130(%) despite the
discontinuity of the visibility step function 210 h,(x), the
gradient engine 160 defines the artificial gradient 220 W_,
to replace the joint term

al, ah,
Iy Ap

[0063] As persons skilled in the art will recognize, the
additional color information conveyed in
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al,
Ol

allows the gradient engine 160 to define gradients only in the
direction that decreases the image loss 192. The gradient
engine 160 approximates the discontinuous function of the
pixel value 280 I, with respect to the point position 132 p,
with a continuous linear function. Subsequently, the gradient
engine 160 defines the gradient for the pixel value 280 L,
with respect to the point position 132 p, as

Al
Ax’

where Al denotes the change in pixel value 280 L. and Ax,
denotes the change in a projected point position 240 corre-
sponding to the point position 132 p,. As referred to herein,
when the point 130(k) is projected from source space to
screen space, the resulting projected point lies at the pro-
jected point position 240 x,. The change in the pixel value
280 is also referred to herein as a pixel value change 282,
and the change in the projected point position 240 is also
referred to herein as a point position change 260.

[0064] For explanatory purposes only, an example of the
gradient for the pixel value 280 I with respect to the point
position 132 p, for a one-dimensional scenario in which an
ellipse associated with the point 130(%) is not initially visible
at the pixel 230(x) is depicted as part of an example denoted
“decreasing image loss in one dimension” 232. As persons
skilled in the art will recognize, the artificial gradient 220
W_ ;. expresses the pixel value change 282 when varying the
point position 132 p,, assuming that the shape and colors of
the associated ellipse are fixed. Assuming that the shape and
colors of the associated ellipse are fixed is justified for
sunlight diffuse shading.

[0065] In general, whenever the pixel value change 282
resulting from the movement of the point position 132 p, can
decrease the image loss 192, the gradient engine 160 gen-
erates the artificial gradient 220 that pushes the point 130(%)
in the corresponding direction. Scenarios for which the pixel
value change 282 Al resulting from the movement of the
point 130(k) can decrease the image loss 192 satisty the
following equation (12):

a.L; 12)
AIXB_IX <0

[0066] As depicted with the dotted line, the gradient
engine 160 generates a linear approximation to the discon-
tinuous function of the pixel value 280 I, with respect to the
point position 132 p, and therefore the associated projected
point position 240. Based on the linear approximation, the
gradient engine 160 defines the artificial gradient 220 as

Al
Ax,’
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[0067] As shown, before movement 250, the projected
point corresponding to the point 130(%) at the point position
132 p, lies at the projected point position 240 x,. The
artificial gradient 220 pushes the point 130(%). After move-
ment 270, the projected point lies the point position change
260 (Ax,) to the right of the original projected point position
240 x,.. Furthermore, as a result of the movement of the splat
associated with the point 130(%), the pixel value 280 of the
pixel 230(x) increases by the pixel value change 282 Al .
[0068] As described in greater detail in conjunction with
FIG. 3, as part of generating the artificial gradient 220, the
gradient engine 160 determines a translation vector d based
on the following equation (13):

d=q,~py (13)
[0069] Assuming that the pixel values 280 have C chan-

nels, the gradient engine 160 defines the artificial gradient
220 using the following equation (14):

Wy = (14)

¢ Al
c=0 ’ d
2l +e

C

if point 130 (k) is visible at pixel 230(x)

=0 Al

— —  d+
(Il + il + &

c
c=0 Al

(ldll = Plidll +&

otherwise

[0070] Inequation (14), ris the distance between the point
position 132 p, and the edge of the ellipse. As persons skilled
in the art will recognize, the impact that the point 130(%) has
on the pixel 230(x) decreases as the point position change
260 increases. The value ¢ is a relatively small constant (e.g.,
0.01) that prevents the artificial gradient 220 from becoming
extremely large when p, and q, are relatively close, thereby
preventing overshooting, oscillation and other convergence
problems that can be associated with extremely large gra-
dients.

[0071] To increase accuracy when computing the pixel
value change 282, the gradient engine 160 evaluates equa-
tion (6) after moving the point 130(k) while taking into
account currently occluded ellipses. The gradient engine
160, the splatting engine 142, and/or the forward rendering
engine 140 may track the currently occluded ellipses in any
technically feasible fashion. For instance, in some embodi-
ments and for each of the pixels 230, the splatting engine
142 caches an ordered list of ellipse data for the top T (e.g.,
5) closest ellipses that can be projected to the pixel 230. The
ellipse data includes, without limitation, the discontinuous
truncated Gaussian weights p, the attributes w,, and depth
values.

[0072] For each pass, the gradient engine 160 may com-
pute any amount of gradient data 164 for any number and
permutations of points 130, pixels 230, point attributes, and
point values 280. Advantageously, because the rendering
function is relatively simple, the gradient engine 160 can
compute the gradient data 164 analytically. Furthermore, the
gradient engine 160 evaluates the movement of the points
130 in 3D space and, consequently, the optimization engine
190 can subsequently optimize in the depth dimension using
any number (including one) of views. In addition, the
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gradient engine 160 computes the gradient for all dimen-
sions of the point 130 jointly. Importantly, the gradient
engine 160 computes each pixel value change 282 for the
pixel 230(x) using a set of occluded and occluding ellipses
projected to the pixel 230(x). As a result, the accuracy of the
gradient values is increased and the optimization engine 190
is encouraged to move noisy points 130 inside the point
cloud 122 onto the surface of the point cloud 122 to
positions corresponding to similar pixel values 280.

[0073] FIG. 3 illustrates how the gradient engine 160 of
FIG. 2 determines translation vectors 350 for different
exemplary scenarios, according to various embodiments.
For explanatory purposes only, a target change in screen
space 310 depicts the negative gradient of the image loss 192
with respect to the pixel value 280, denoted as

o4
al’

Visually, me target change in screen space 310 depicts the
color change for each pixel 230 of a grayscale rendered
image 150 that would decrease the image loss 192. If the
pixels 230 depicted in dark gray were to become darker, then
the rendered image 150 would become more similar to the
reference image 152 of a star.

[0074] FIG. 3 depicts three different exemplary scenarios
and the associated translation vectors 350 used to compute
the artificial gradient 220 W_, for the point 130(%) from the
image loss 192 at the pixel 230(x). The point 130(%) has the
point position 132 p, and the projected point position 240 x,.
An ellipse 330(%) represents the elliptical Gaussian associ-
ated with the point 130(%) and is depicted relative to an
ellipse plane 340(x) that is orthogonal to the principal axis.
A splat 360(k) represents the ellipse 330(%) after convolution
with the low-pass Gaussian filter in screen space.

[0075] A closer rendered eclipse 370 depicts a scenario in
which the darker ellipse 330(%) is not visible at the pixel
230(x) and the pixel 230(x) is rendered by another ellipse
330 or multiple, lighter ellipses 330 that are in front of the
ellipse 330(%). Note that moving the darker splat 360(%) to
cover the pixel 230(x) would darker the pixel 230(x).
Accordingly, the gradient engine 160 sets q, equal to the
intersection of the viewing ray with the front-most ellipse
330(g) that is rendered at the pixel 230(x). The gradient
engine 160 then defines the translation vector 350 d in the
q,-p; direction.

[0076] No rendered ellipse 370 depicts a scenario in which
the darker ellipse 330(%) is not visible at the pixel 230(x) and
none of the ellipses 360 are rendered at the pixel 230(x) or
the currently rendered ellipse(s) 360 are behind the darker
ellipse 330(k). As shown, the gradient engine 160 sets q,
equal to the intersection of the viewing ray with the ellipse
plane 340(%k). The gradient engine 160 then defies the
translation vector 350 d in the q -p, direction.

[0077] Multiple rendered ellipses 390 depicts a scenario in
which the lighter ellipse 330(%) is at least partial visible at
the pixel 230(x). As shown, q, is the intersection of the
viewing ray with the darker ellipse 330(¢). Note that moving
the lighter ellipse 330(%) towards q, would reveal the darker
ellipse 330(¢g) and would therefore darken the pixel 230(x).
Similarly moving the lighter ellipse 330(k) away from q,
would reveal the darker ellipse 330(¢) and would therefore
darken the pixel 230(x). Because either movement would
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darken the pixel 230(x), the gradient engine 160 determines
a translation option 352(1) d, and a translation option 352(2)
d, in opposite directions. The gradient engine 160 then
defines the translation vector 350 d as the average of the
translation option 352(1) d, and the translation option 352(2)
d,.

[0078] In alternate embodiments, the gradient engine 160
may determine the translation vector 350 in any technically
feasible fashion and for any number of different types of
scenarios.

Surface Regularization

[0079] FIG. 4 is a more detailed illustration of the regu-
larization engine 180 of FIG. 1, according to various
embodiments. As shown, the regularization engine 180
includes, without limitation, a repulsion loss term 430 and a
projection loss term 480. The repulsion loss term 430 and the
projection loss term 480 are also referred to herein as
“surface regularization terms.” The repulsion loss term 430,
the projection loss term 480, and an image loss term (not
shown) are included in the overall loss function (not shown)
that the optimization engine 190 uses to optimize the attri-
butes of the points 130.

[0080] As persons skilled in the art will recognize, without
appropriate regularization, high degrees of freedom associ-
ated with optimization operations and/or the targets of
optimization operations (e.g., the point locations 132 and the
point normals 134) can cause optimization errors. The
repulsion loss term 430 and the projection loss term 480
reduce the likelihood that the lack of structure inherent in the
point cloud 122 adversely impacts the optimization opera-
tions performed by the optimization engine 190.

[0081] To encourage relatively uniform distributions of
the points 130, the repulsion loss term 430 is minimized for
the point 130(%) when the distances between the point 130(%)
and the points 130 neighboring the point 130(%) on a local
projection plane are maximized. In operation, when the
optimization engine 190 performs optimization operations
on an attribute associated with the point 130(%), the repul-
sion loss term 430 encourages the optimization engine 190
to maximize the distance between the point 130(k) and the
neighbors of the point 130(%) on the local projection plane.
[0082] For explanatory purposes only, “without minimiz-
ing repulsion loss” 420 depicts an exemplary shape that the
optimization engine 190 could generate if the repulsion loss
term 430 were not included in the overall loss function. As
shown, if the repulsion loss term 430 were not included in
the overall loss function, then the optimization engine 190
could cluster the points 130 at a common local minimum
that lies at the center of the reference shape. As referred to
herein, the “reference shape” is the shape of a 3D object
corresponding to at least a portion of the reference image
152. The center of the reference shape is a common local
minimum because the gradients from the surrounding pixels
230 cancel each other out. By contrast and as depicted in
“minimizing repulsion loss” 440, because the repulsion loss
term 430 is included in the overall loss function, the opti-
mization engine 190 spreads the points 130 relatively evenly
inside the silhouette of the reference shape (a teapot).
[0083] To encourage the preservation of clean surfaces,
the projection loss term 480 is minimized for the point
130(%k) when the distance between the point 130(%) and the
surface tangent plane is minimized. In operation when the
optimization engine 190 performs optimization operations
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on an attribute associated with the point 130(%), the projec-
tion loss term 480 encourages the optimization engine 190
to minimize the distance between the point 130(%) and the
surface tangent plane.

[0084] For explanatory purposes only, “without minimiz-
ing propulsion loss” 470 depicts an exemplary shape that the
optimization engine 190 could generate if the projection loss
term 480 were not included in the overall loss function. As
shown, if the projection loss term 480 were not included in
the overall loss function, then the optimization engine 190
could scatter the points 130 within and outside the surface of
the reference shape. By contrast and as depicted in “mini-
mizing propulsion loss™ 490, because the repulsion loss term
480 is included in the overall loss function, the optimization
engine 190 moves the points 130 to define a relatively clean
and relatively smooth surface corresponding to the reference
shape (a rabbit).

[0085] Computing the repulsion loss term 430 and the
projection loss term 480 involves determining a reliable
surface tangent plane. As persons skilled in the art will
recognize, during optimization (and particularly during
multi-view joint optimization), intermediate point clouds
122 can be noisy and include many occluded points 130.
Accordingly, in some embodiments, the regularization
engine 180 uses weighted Principal Component Analysis
(“PCA™) to penalize occluded inner points. More precisely,
since occluded points 130 are more likely than other points
130 to be outliers inside a shape, a visibility weight is used
to penalize occluded points 130. The visibility weight is
added to commonly implemented bilateral weights that
consider both the point-to-point Fuclidean distance and the
normal similarity. The following equations (15a)-(15¢)
specify weights that can be used to compute a weighted
PCA:

llpi - pell® (152)
Wi = exp) i —
(1- n,z-n;)z (15b)
O = exp) " max(le s, 1 - cos(®))
1 (15¢)
Qi = o+l
[0086] Equation (15a) defines a bilateral weight that

favors neighboring points 130 that are spatially close. Equa-
tion (15b) defines a bilateral weight that favors neighboring
points 130 that have similar point normals 134. Equation
(15¢) defines the visibility weight based on an occlusion
counter o,, that counts the number of times p,, is occluded in
all camera views. In Equations (15a)-(15¢) p, denotes a
particular point and p, denotes one point in the neighbor-
hood of p, e {plllp-pl=D }. In equation 15(b), O is a constant
(7/3).

[0087] Insome embodiments, a reliable projection plane is
obtained using singular value decomposition from the
weighted vectors using the following equation (16):

Vi O Pu (16)

K
Wik(Pi - Zk:o Wik P ), where wy = m
i=0 Vit Vik i
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[0088] The repulsion loss term 430 can be defined using
the following equations (17a) and (17b):

1 By (17a)
L= E E -
N dz + 107
N K

ST
dy =VV (pi - pr) (170)

[0089] In equations (17a) and (17b), d,, is the point-to-
point distance and ¥ contains the first two principal com-
ponents.

[0090] The projection loss term 480 can be defined using
the following equations (18a) and (18b):

Lp = %ZN:ZK:W"M‘% (8

di = Vo VT (pi = po). (18b)

[0091]
ponents.
[0092] In alternate embodiments, any number of software
applications (e.g., the differentiable rendering application
102, the inverse rendering application 120, the regulariza-
tion engine 180, the optimization engine 190, a neural
network, etc.) may implement any number of regularization
terms in any technically feasible fashion. In the same or
other embodiments, any number of software applications
may implement any number and type of technically feasible
techniques that drive the points 130 towards the most
plausible point configuration, such as a relatively uniform
distribution on local geometric structures.

[0093] FIG. 5 is a flow diagram of method steps for
determining attributes associated with 3D scenes based on
2D images, according to various embodiments. Although the
method steps are described with reference to the systems of
FIGS. 1-4, persons skilled in the art will understand that any
system configured to implement the method steps, in any
order, falls within the scope of the embodiments.

[0094] As shown, a method 500 begins at step 502, where
the splatting engine 142 performs rendering operations on
the point cloud 122 using elliptical weighted averaging
rendering to generate the splat data 144 and the rendered
image 150. At step 504, the gradient engine 160 computes
one or more artificial gradients 220, where each of the
artificial gradients 220 is associated with a different combi-
nation of the pixels 230 and the points 130. At step 506, the
gradient engine 160 computes the gradient data 164 based
on the artificial gradient(s) 220.

[0095] At step 508, the regularization engine 180 com-
putes the repulsion loss 182 and the projection loss 184
based on the point cloud 122. At step 510, the optimization
engine 190 determines the image loss 192 based on the
rendered image 150 and the reference image 152. At step
512, the optimization engine 190 computes the overall loss
194 based on image loss 192, the repulsion loss 182, and the
projection loss 184. At step 514, the optimization engine 190
performs any number and type of optimization operations on
any number and type of attributes of any number of the
points 130 based on the overall loss 194 and the gradient
data 164 to generate the point update data 196.

In equations (18a) and (18b), V,, is the last com-
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[0096] At step 516, the inverse rendering application 120
updates the point cloud 122 as per the point update data 196.
At step 518, the inverse rendering application 120 deter-
mines whether to continue iterating. The inverse rendering
application 120 may determine whether to continue iterating
in any technically feasible fashion. If, at step 518, the
inverse rendering application 120 determines to continue
iterating, then the method 500 returns to step 502, where the
splatting engine 142 performs rendering operations on the
point cloud 122 to generate new splat data 144 and a new
rendered image 150. If, however, at step 518, the inverse
rendering application 120 determines to cease iterating, then
the method 500 terminates.

[0097] In sum, the disclosed techniques may be used to
efficiently and accurately infer attributes of 3D scenes based
on 2D images. In a forward pass, a differentiable rendering
application performs screen space elliptical weighted aver-
age (EWA) filtering on point attributes to compute pixel
values for a rendered image. More specifically, the differ-
entiable rendering application represents each point as a disk
or ellipse in the source space and projects the ellipse onto the
screen space to form a splat. The differentiable rendering
application then interpolates the splats to facilitate hole-free
and antialiased renderings. Notably, the overall rendering
function can be factorized into a fully differentiable term and
a discontinuous visibility term

[0098] In a forward pass, the rendering application defines
a gradient for a pixel value with respect to a point despite the
discontinuous visibility term. The gradient includes an
approximate partial derivative of the pixel value with respect
to the point position and an approximate partial derivative of
the pixel value with respect to the point normal. For the
partial derivative of the pixel value with respect to the point
position, the rendering application approximates the contri-
bution of the discontinuous visibility term with an artificial
gradient. For the partial derivative of the pixel value with
respect to the point normal, the rendering application
approximates the contribution of the discontinuous visibility
term as zero. The rendering application computes the gra-
dients for any number of pixel values with respect to any
number of points and transmits the gradients as gradient data
to an inverse rendering application.

[0099] The inverse rendering application independently
optimizes point positions and point normals based on an
overall loss function and the gradient data. For instance, in
some embodiments, the inverse rendering application inde-
pendently optimizes and modifies the point normals during
Tn passes and then independently optimizes and modifies
the point positions during Tp subsequent passes. The overall
loss function is a weighted aggregation of an image loss
function, a repulsion loss term and a projection loss term.
The artificial gradients enable the inverse rendering appli-
cation to effectively optimize the point attributes based on
any type of image loss function. Optimizing the repulsion
loss term facilitates uniform point distributions by maximiz-
ing the distances between the neighbors of the point selected
for optimization on a local projection plane. In a compli-
mentary fashion, optimizing the projection loss term pre-
serves clean surfaces by minimizing the distance from the
point selected for optimization to the surface tangent plane.
[0100] At least one technical advantage of the disclosed
techniques relative to the prior art is that the differentiable
rendering application can be inserted into neural networks to
more efficiently and more reliably solve computer vision
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problems. In particular, performing optimization operations
on relatively unstructured point clouds instead of relatively
structured polygon meshes enables the inverse rendering
application, a neural network, or any other optimization
algorithm to effectively infer changes at any scale. For
example, connectivity information is not directly repre-
sented in point clouds. Consequently, the inverse rendering
application can make topology changes (e.g., merging and/
or separating surfaces) when optimizing the point cloud to
more accurately represent 3D objects relative to prior art
approaches. Furthermore, by implementing surface regular-
ization terms, the inverse rendering application can ensure
that points stay on local geometric structures with uniform
distribution. In another example, the inverse rendering appli-
cation can modify the normal of a point independently of the
position of the point, which allows the inverse rendering
application to more effectively infer small scale details of 3D
objects conveyed via normals, such as the lighting of surface
bumps, relative to prior art approaches. These technical
advantages provide one or more technological advance-
ments over the prior art.

[0101] 1. In some embodiments, a computer-implemented
method for inferring attributes associated with a three-
dimensional (3D) scene comprises rendering a first image
based on a first plurality of points associated with the 3D
scene; generating a first artificial gradient that approximates
a change in a first value of a first pixel included in the first
image with respect to a change in a first attribute of a first
point included in the first plurality of points; and performing
one or more optimization operations on the first point based
on the first artificial gradient to generate a second plurality
of points, wherein an error associated with the second
plurality of points is less than an error associated with the
first plurality of points.

[0102] 2. The computer-implemented method of clause 1,
wherein performing the one or more optimization operations
comprises modifying a first position of the first point to
generate a second position of a second point included in the
second plurality of points, wherein the first point and the
second point have a same first normal.

[0103] 3. The computer-implemented method of clauses 1
or 2, wherein performing the one or more optimization
operations comprises comparing the first image to a refer-
ence image to compute an image loss; and modifying at least
the first attribute of the first point based on the first artificial
gradient to reduce the image loss.

[0104] 4. The computer-implemented method of any of
clauses 1-3, wherein performing the one or more optimiza-
tion operations comprises comparing the first image to a
reference image to compute an image loss; computing one or
more surface regularization losses based on the first plurality
of points; computing the error associated with the first
plurality of points based on the image loss and the one or
more surface regularization losses; and moving the first
point in a direction associated with the first artificial gradient
to reduce the error associated with the first plurality of
points.

[0105] 5. The computer-implemented method of any of
clauses 1-4, wherein the number of distinct surfaces repre-
sented by the first plurality of points is not equal to the
number of distinct surfaces represented by the second plu-
rality of points.

[0106] 6. The computer-implemented method of any of
clauses 1-5, wherein the first attribute comprises a first
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position, and generating the first artificial gradient comprises
computing a translation vector that acts to decrease an image
loss between the first image and a reference image at the first
pixel; and scaling the translation vector based on the change
in the first value of the first pixel.

[0107] 7. The computer-implemented method of any of
clauses 1-6, wherein generating the first artificial gradient
comprises factoring a discontinuous rasterization function to
generate a visibility step function; and computing an
approximation of the change in the first value of the first
pixel with respect to the change in the first attribute of the
first point based on the visibility step function.

[0108] 8. The computer-implemented method of any of
clauses 1-7, wherein the first attribute of the first point
comprises a normal, and generating the first artificial gra-
dient comprises setting the first artificial gradient equal to
Zero.

[0109] 9. The computer-implemented method of any of
clauses 1-8, wherein the first attribute of the first point
comprises a position or a normal, and the first value of the
first pixel is associated with at least one of a color, a shading,
and a depth value.

[0110] 10. The computer implemented method of any of
clauses 1-9, wherein rendering the first image comprises
performing one or more elliptical filtering operations on the
first plurality of points.

[0111] 11. In some embodiments, one or more non-tran-
sitory computer readable media include instructions that,
when executed by one or more processors, cause the one or
more processors to infer attributes associated with a three-
dimensional (3D) scene by performing the steps of rendering
a first image based on a first plurality of points associated
with the 3D scene; and generating a first artificial gradient
that approximates a change in a first value of a first pixel
included in the first image with respect to a change in a first
attribute of a first point included in the first plurality of
points; wherein one or more optimization operations are
performed on the first point based on the first artificial
gradient to generate a second plurality of points, wherein an
error associated with the second plurality of points is less
than an error associated with the first plurality of points.
[0112] 12. The one or more non-transitory computer read-
able media of clause 11, wherein performing the one or more
optimization operations comprises modifying a first normal
associated with the first point to generate a second normal
associated with a second point included in the second
plurality of points, wherein the first point and the second
point reside at a same first position.

[0113] 13. The one or more non-transitory computer read-
able media of clauses 11 or 12, wherein performing the one
or more optimization operations comprises modifying the
first attribute of the first point to reduce at least one of an
image loss, a distance between the first point and a second
point included in the first plurality of points, and a distance
between the first point and a surface tangent plane.

[0114] 14. The one or more non-transitory computer read-
able media of any of clauses 11-13, wherein the number of
distinct surfaces represented by the first plurality of points is
not equal to the number of distinct surfaces represented by
the second plurality of points.

[0115] 15. The one or more non-transitory computer read-
able media of any of clauses 11-14, further comprising
computing a translation vector that acts to decrease an image
loss between the first image and a reference image at the first
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pixel; and computing the change in the first value of the first
pixel based on the translation vector.

[0116] 16. The one or more non-transitory computer read-
able media of any of clauses 11-15, wherein generating the
first artificial gradient comprises factoring a discontinuous
rasterization function to generate a visibility step function;
and computing an approximation of the change in the first
value of the first pixel with respect to the change in the first
attribute of the first point based on the visibility step
function.

[0117] 17. The one or more non-transitory computer read-
able media of any of clauses 11-16, wherein the first attribute
of'the first point comprises a normal, and generating the first
artificial gradient comprises setting the first artificial gradi-
ent equal to zero.

[0118] 18. The one or more non-transitory computer read-
able media of any of clauses 11-17, wherein the first attribute
of the first point comprises a position or a normal, and the
first value of the first pixel is associated with at least one of
a color, a shading, and a depth value.

[0119] 19. The one or more non-transitory computer read-
able media of any of clauses 11-18, wherein rendering the
first image comprises performing one or more elliptical
filtering operations on the first plurality of points.

[0120] 20. In some embodiments, a system comprises one
or more memories storing instructions; and one or more
processors that are coupled to the one or more memories
and, when executing the instructions, are configured to
perform one or more rendering operations on a first point
cloud associated with a 3D scene to generate a first image;
compute an artificial gradient that approximates a change in
a first value of a first pixel included in the first image with
respect to a change in a first attribute of a first point included
in the first point cloud; and perform one or more optimiza-
tion operations on the first point based on the artificial
gradient to generate a second point cloud, wherein an error
associated with the second point cloud is less than an error
associated with the first point cloud.

[0121] Any and all combinations of any of the claim
elements recited in any of the claims and/or any elements
described in this application, in any fashion, fall within the
contemplated scope of the embodiments and protection.

[0122] The descriptions of the various embodiments have
been presented for purposes of illustration, but are not
intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments.

[0123] Aspects of the present embodiments may be
embodied as a system, method or computer program prod-
uct. Accordingly, aspects of the present disclosure may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident soft-
ware, micro-code, etc.) or an embodiment combining soft-
ware and hardware aspects that may all generally be referred
to herein as a “module,” a “system,” or a “computer.” In
addition, any hardware and/or software technique, process,
function, component, engine, module, or system described
in the present disclosure may be implemented as a circuit or
set of circuits. Furthermore, aspects of the present disclosure
may take the form of a computer program product embodied
in one or more computer readable medium(s) having com-
puter readable program code embodied thereon.

Mar. 4, 2021

[0124] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0125] Aspects of the present disclosure are described
above with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine. The instructions, when executed via
the processor of the computer or other programmable data
processing apparatus, enable the implementation of the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks. Such processors may be, without
limitation, general purpose processors, special-purpose pro-
cessors, application-specific processors, or field-program-
mable gate arrays.

[0126] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods and computer
program products according to various embodiments of the
present disclosure. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple-
mentations, the functions noted in the block may occur out
of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in
the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block
diagrams and/or flowchart illustration, and combinations of
blocks in the block diagrams and/or flowchart illustration,
can be implemented by special purpose hardware-based
systems that perform the specified functions or acts, or
combinations of special purpose hardware and computer
instructions.

[0127] While the preceding is directed to embodiments of
the present disclosure, other and further embodiments of the
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disclosure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A computer-implemented method for inferring attri-
butes associated with a three-dimensional (3D) scene, the
method comprising:

rendering a first image based on a first plurality of points

associated with the 3D scene;

generating a first artificial gradient that approximates a

change in a first value of a first pixel included in the first
image with respect to a change in a first attribute of a
first point included in the first plurality of points; and
performing one or more optimization operations on the
first point based on the first artificial gradient to gen-
erate a second plurality of points, wherein an error
associated with the second plurality of points is less
than an error associated with the first plurality of points.

2. The computer-implemented method of claim 1,
wherein performing the one or more optimization operations
comprises modifying a first position of the first point to
generate a second position of a second point included in the
second plurality of points, wherein the first point and the
second point have a same first normal.

3. The computer-implemented method of claim 1,
wherein performing the one or more optimization operations
comprises:

comparing the first image to a reference image to compute

an image loss; and

modifying at least the first attribute of the first point based

on the first artificial gradient to reduce the image loss.

4. The computer-implemented method of claim 1,
wherein performing the one or more optimization operations
comprises:

comparing the first image to a reference image to compute

an image loss;

computing one or more surface regularization losses

based on the first plurality of points;

computing the error associated with the first plurality of

points based on the image loss and the one or more
surface regularization losses; and

moving the first point in a direction associated with the

first artificial gradient to reduce the error associated
with the first plurality of points.

5. The computer-implemented method of claim 1,
wherein the number of distinct surfaces represented by the
first plurality of points is not equal to the number of distinct
surfaces represented by the second plurality of points.

6. The computer-implemented method of claim 1,
wherein the first attribute comprises a first position, and
generating the first artificial gradient comprises:

computing a translation vector that acts to decrease an

image loss between the first image and a reference
image at the first pixel; and

scaling the translation vector based on the change in the

first value of the first pixel.

7. The computer-implemented method of claim 1,
wherein generating the first artificial gradient comprises:

factoring a discontinuous rasterization function to gener-

ate a visibility step function; and

computing an approximation of the change in the first

value of the first pixel with respect to the change in the
first attribute of the first point based on the visibility
step function.
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8. The computer-implemented method of claim 1,
wherein the first attribute of the first point comprises a
normal, and generating the first artificial gradient comprises
setting the first artificial gradient equal to zero.

9. The computer-implemented method of claim 1,
wherein the first attribute of the first point comprises a
position or a normal, and the first value of the first pixel is
associated with at least one of a color, a shading, and a depth
value.

10. The computer implemented method of claim 1,
wherein rendering the first image comprises performing one
or more elliptical filtering operations on the first plurality of
points.

11. One or more non-transitory computer readable media
including instructions that, when executed by one or more
processors, cause the one or more processors to infer attri-
butes associated with a three-dimensional (3D) scene by
performing the steps of:

rendering a first image based on a first plurality of points
associated with the 3D scene; and

generating a first artificial gradient that approximates a
change in a first value of a first pixel included in the first
image with respect to a change in a first attribute of a
first point included in the first plurality of points;
wherein

one or more optimization operations are performed on the
first point based on the first artificial gradient to gen-
erate a second plurality of points, wherein an error
associated with the second plurality of points is less
than an error associated with the first plurality of points.

12. The one or more non-transitory computer readable
media of claim 11, wherein performing the one or more
optimization operations comprises modifying a first normal
associated with the first point to generate a second normal
associated with a second point included in the second
plurality of points, wherein the first point and the second
point reside at a same first position.

13. The one or more non-transitory computer readable
media of claim 11, wherein performing the one or more
optimization operations comprises modifying the first attri-
bute of the first point to reduce at least one of an image loss,
a distance between the first point and a second point
included in the first plurality of points, and a distance
between the first point and a surface tangent plane.

14. The one or more non-transitory computer readable
media of claim 11, wherein the number of distinct surfaces
represented by the first plurality of points is not equal to the
number of distinct surfaces represented by the second plu-
rality of points.

15. The one or more non-transitory computer readable
media of claim 11, further comprising:

computing a translation vector that acts to decrease an
image loss between the first image and a reference
image at the first pixel; and

computing the change in the first value of the first pixel
based on the translation vector.
16. The one or more non-transitory computer readable
media of claim 11, wherein generating the first artificial
gradient comprises:

factoring a discontinuous rasterization function to gener-
ate a visibility step function; and
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computing an approximation of the change in the first
value of the first pixel with respect to the change in the
first attribute of the first point based on the visibility
step function.

17. The one or more non-transitory computer readable
media of claim 11, wherein the first attribute of the first point
comprises a normal, and generating the first artificial gra-
dient comprises setting the first artificial gradient equal to
Zero.

18. The one or more non-transitory computer readable
media of claim 11, wherein the first attribute of the first point
comprises a position or a normal, and the first value of the
first pixel is associated with at least one of a color, a shading,
and a depth value.

19. The one or more non-transitory computer readable
media of claim 11, wherein rendering the first image com-
prises performing one or more elliptical filtering operations
on the first plurality of points.
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20. A system, comprising:
one or more memories storing instructions; and
one or more processors that are coupled to the one or more
memories and, when executing the instructions, are
configured to:
perform one or more rendering operations on a first
point cloud associated with a 3D scene to generate a
first image;
compute an artificial gradient that approximates a
change in a first value of a first pixel included in the
first image with respect to a change in a first attribute
of a first point included in the first point cloud; and
perform one or more optimization operations on the
first point based on the artificial gradient to generate
a second point cloud, wherein an error associated
with the second point cloud is less than an error
associated with the first point cloud.
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